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Abstract

Upon hydrogenation from para-hydrogen (p-H2), hyperpolarization transfer toward a heteronucleus may be possible even if the two
protons are chemically equivalent in the final product (but not magnetically equivalent), provided that J couplings with the heteronucleus
exist. It is however shown (theoretically and experimentally) that this transfer effectively occurs if the spin system in the hydrogenated
molecule is of the type AA 0X (A and A 0 denoting the two protons originating from p-H2 and X the heteronucleus) but does not occur for
a spin system of the A2A

0
2X type. A theory has been worked out for assessing the details of the X spectrum (multiplet patterns) in the case

of ALTADENA and PASADENA experiments. Experimental verifications are provided.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

It is now well established that the addition of hydrogen
enriched in the para spin state (para-H2) to organic or inor-
ganic compounds can lead to strongly enhanced absorp-
tions/emissions in the 1H NMR spectrum of the
hydrogenated substrates [1–6].

This phenomenon occurs provided that the following
conditions are satisfied: (a) the spin correlation between
the two hydrogen nuclei must be maintained during the
hydrogenation, (b) the symmetry of the hydrogen molecule
is broken in the reaction product, (c) hydrogenation pro-
cess is fast enough to prevent the equilibrium population
of the spin levels being restored by relaxation in the inter-
mediate states [3,4].

The hyperpolarization of the hydrogens set can be
transferred to heteroatoms present on the hydrogenated
substrates (heteronuclear-para-hydrogen induced polariza-
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tion) by means of scalar coupling with para-hydrogen nu-
clei (polarization transfer through the spin system) or
through the nuclear Overhauser effect phenomenon [7–11].

The strongest hyperpolarization effects (up to 2–3 thou-
sand times) are due to scalar coupling (J coupling) between
heteronuclei and para-hydrogen in hydrogenation prod-
ucts. This kind of polarization transfer has been studied
from a theoretical point of view and relationships between
the intensity of polarization and the strength of JH–H and
JH–X (where X is an heteroatom, usually 13C) have been
proposed [8,10]. This phenomenon has been observed in
several para-hydrogenated organic molecules, both sym-
metrical and asymmetrical, especially if the hydrogenation
is carried out in a low magnetic field (ALTADENA exper-
iments) [12]. The aim of our work was to explore how dif-
ferent isotopomers may show different heteronuclear para-
hydrogen Induced Polarization effects as a consequence of
the changes in symmetry of the spin states and to account
for the details of the heteronucleus spectrum.

To this purpose the para-hydrogenation of dimethyl
maleate and of its bideuterated analogue (CH3OOC–
CD@CD–COOCH3) has been considered.
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2. Experimental results

The para-hydrogenation of dimethylmaleate (A or C) to
dimethylsuccinate (B or D) has been carried out in acetone-
d6 in the presence of [Rh(COD)dppb]+BF4

� as catalyst
(8 mM).

For most experiments, the ALTADENA procedure has
been followed, i.e., 0.5 ml of a solution of A (150 mM) in a
5-mm NMR tube equipped with a teflon valve is loaded
with 4 atm of para-hydrogen; after a vigorous shaking
the NMR tube is introduced in the magnet and a single
scan 13C spectrum is immediately acquired.

In the case of ðAÞ !p-H2ðBÞ, we do not observe any polar-
isation in the 13C NMR spectrum: this cannot be explained
by considering the J constants between para-hydrogen pro-
tons ðJH�–H� Þ and heteronuclei ðJH�–CÞ but we must take
into account the other two protons of the substrate.

The importance of these 1H nuclei on the polarisation
transfer to 13C has been demonstrated performing the
same experiment on the bideuterated dimethylmaleate
Fig. 1. 13C NMR spectrum (1 scan) of para-hydrogenated dimethyl-maleate
multiplet on the left, which partly overlap with the dimethylsuccinate spectrum
(CH3OOC–CD@CD–COOCH3) (C). Compound C has
been obtained by catalytic deuteration of acetylene dicarb-
oxylate dimethyl ester [Aldrich No. 762-42-5]. The deuter-
ation of the alkyne to the alkene-d2 has been followed by
means of the methyl 1H NMR signal of the alkene product.
ðCÞ !p-H2ðDÞ was also obtained by means of a PASADENA
experiment. For convenience and sensitivity reasons, the
hydrogenation reaction was carried out in the fringe of a
cryomagnet at relatively high pressure (4 atm).

Contrary to compound B, the deuterium containing
para-hydrogenated dimethylsuccinate D displays a detect-
able polarization in the 13C NMR spectrum. As shown in
Fig. 1 (ALTADENA spectrum), D shows hyperpolarized
13C signals in the aliphatic region. The multiplet pattern
(doublet of triplets) is due to direct scalar coupling con-
stants 1JCHA

and 1JCD and the separation between the
absorption and emission peaks is related to the 2JCHA0

coupling. The PASADENA spectrum (Fig. 2) exhibits a
different pattern in the aliphatic region and presents in
addition an enhancement of the carbonyl signal. It is
therefore advisable to work out a detailed theoretical
investigation of the processes involved in these
experiments.
2.1. Theory of hyperpolarization transfer (general
considerations)

As detailed in a previous work [10] and outlined here,
the problem can be attacked by relying on the density oper-
ator, the initial expression of which is

rð0Þ ¼ E=4� IAIA
0 � IAIA

0 � IAIA
0
; ð1Þ
-d2, ALTADENA experiment. Only the aliphatic part is enhanced. The
is due to acetone-d6.



Fig. 2. The PASADENA 13C spectrum of para-hydrogenated dimethylmaleate-d2 obtained in experimental conditions described in text. Notice that the
aliphatic pattern is different from the one of Fig. 1 and that the carbonyl signal is also enhanced.
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where A and A 0 denote the two hydrogens in the para state.
E is the identity operator and I are spin operators.

When hydrogenation process occurs, there is a sudden
change of the Hamiltonian governing the spin system and
the evolution of the density operator can be deduced from
the Liouville–von Neumann equation

drðtÞ
dt

¼ �i½H;rðtÞ�. ð2Þ

When the hydrogenation process comes to an end, one
reaches a steady state such as drst

dt ¼ 0 which amounts to
write

½H; rst� ¼ 0. ð3Þ
In other words, the steady state of the spin system is such
that the density operator must commute with the Hamilto-
nian of the new spin system. For an ALTADENA experi-
ment (hydrogenation supposed to take place in zero
magnetic field), it is the full J coupling Hamiltonian which
can be written as

HALT
J ¼

X
i<i0

J ii0 ðI ixI i
0

x þ I iyI
i0

y þ I izI
i0

z Þ ð4Þ

for any pair of nuclei (including A and A 0) whenever
they are not part of a set of magnetically equivalent nu-
clei. In that case, spin operators related to the whole set
of magnetically equivalent nuclei are relevant. We fur-
ther assume that molecular motions are sufficiently fast
to average out dipolar interactions. This is generally
the case in the liquid state; this feature arises simply
from the fact that the trace of the dipolar tensor is zero
and has nothing to do with the strength of the static
magnetic field.
It was shown [10] that, for a PASADENA experiment,
only the J coupling Hamiltonian is again relevant and
assuming first order conditions (except of course for A
and A 0), one has

HPASA
J ¼ JAA0 IAz I

A0

z þ IAx I
A0

x þ IAy I
A0

y

� �
þ
X
i

ðJAiIAz I
i
z

þ JA0iI
A0

z I izÞ þ
X

i<j;i;j 6¼A;A0
J ijI izI

j
z. ð5Þ

The density operator can always be expanded as

r ¼ E=4þ
X
j

ajGj; ð6Þ

where Gj are all possible spin product operators of the form
Gj ¼

Qn
i¼1S

ðjÞ
i where SðjÞ

i is Ei, I ix, I
i
y , or I

i
z and n is the num-

ber of spins in the hydrogenated molecule. These operator
products are known to be orthogonal, that is

TrðGþ
k GlÞ ¼ 0 for k 6¼ l; ð7Þ

where Gþ
k is the adjoint of Gk, i.e., the transposed complex

conjugate of Gk.
Owing to the initial state (see (1)), we shall use for con-

venience the following notations:

G1 ¼ IAx I
A0

x ; G2 ¼ IAy I
A0

y ; G3 ¼ IAz I
A0

z . ð8Þ

From Eqs. (2) and (6), the evolution of the spin system can
be evaluated by the following equation:X
j

daj
dt

Gj ¼ �i½H; r�.

Resorting to the property expressed by (7) and noting that
all operators Gj are hermitian (with the consequence that
Gþ

j ¼ Gj, we obtain
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daj
dt

¼ �iTrð½H; r�GjÞ ¼ iTrð½H;Gj�rÞ. ð9Þ
2.2. Invariants

2.2.1. The A2X and AA 0X spin systems

The immediate consequence of (9) is that the quantity Gj

does not evolve if the associated operator commutes with
the Hamiltonian of the spin system corresponding to the
hydrogenated molecule (in that case, daj

dt ¼ 0 and
astj ¼ ajð0Þ). In particular, if G1 + G2 + G3 commutes with
the Hamiltonian, then rst = r(0) and no transfer can occur
towards any other quantity. This is the case whenever the
two hydrogen nuclei remain magnetically equivalent after
hydrogenation since the part of the Hamiltonian concerning
J coupling between these two nuclei, JAA0 ðIAx IA

0

x þ
IAy I

A0

y þ IAz I
A0

z Þ (which is, except the factor JAA0 , nothing else
than G1 + G2 + G3) is known to commute with the whole
Hamiltonian [13]. Thus, no hyperpolarization transfer oc-
curs if the hydrogenated molecule proceeds from an A2X
spin system while transfer toward X becomes possible for
an AA 0X spin system (the subject of the present study).

2.2.2. The A2A
0
2X spin system

A related situation is when the two hydrogens in the
para state are embedded, upon hydrogenation, in two
different sets of magnetically equivalent nuclei. This is
precisely the case for the hydrogenation of dimethylmal-
eate which results in dimethylsuccinate (see above). For
molecules involving a carbon-13 within the initial double
bond, we have to deal with a A2A

0
2X spin system, one

of the two para hydrogens is A, the other A 0. As shown
in the next section, hyperpolarization transfer, if it oc-
curs, originates necessarily from G1 + G2 + G3 and is
mediated by JAA0 . In other words, only
ðIAx IA

0

x þ IAy I
A0

y þ IAz I
A0

z Þ must be multiplied by JAA0 in
the Hamiltonian of the final spin system. It turns out
that such a term no longer exists in the Hamiltonian
of a A2A

0
2X spin system. Rather one has (A1 and A0

1

being the two additional protons of the spin system)

JAA0 ðIAx IA
0

x þ IAx I
A0

1
x þ IA1

x IA
0

x þ IA1
x IA

0
1

x þ IAy I
A0

y þ IAy I
A0

1
y

þ IA1
y IA

0

y þ IA1
y IA

0
1

y þ IAz I
A0

z þ IAz I
A0

1
z þ IA1

z IA
0

z þ IA1
z IA

0
1

z Þ.

Clearly G1 + G2 + G3 vanishes by losing its identity
through admixture with the three other terms and by the
fact that (A,A1) on one hand, and (A 0, A0

1) on the other
hand, are indistinguishable. This feature thus precludes

any polarization transfer toward X in an A2A
0
2X spin system

and explains the above experimental results. It can, howev-
er, be noted that the hyperpolarization originating from p-
H2 cannot be lost and remains amid the proton spin system
(observed experimental results not shown). Albeit not
transferred to X, it actually appears as enhanced 13C satel-
lites in the proton spectrum since the presence of a carbon-
13 is necessary for breaking the symmetry, thus unraveling
the existence of hyperpolarization.
2.3. Polarization transfers

In other situations, where G1 + G2 + G3 is still present in
the Hamiltonian without commuting with it, we can expect
transfers toward other quantities through equations derived
from ½H; rst� ¼ 0. These transfers will be assessed by the
coefficients astj involved in the expansion in the steady state
density operator (see (6)) rst ¼

P
ja

st
j Gj whereas the effective

part of the Hamiltonian can be expanded as H ¼
P

iJ iGi

where Ji is the J coupling between two spins and Gi the
two-spin product operator corresponding to this coupling.
Resorting to ½H ; rst� ¼ 0 leads to equations of the typeX
i;j

J i½Gi;Gj�astj ¼ 0. ð10Þ

The commutator in (10) is non-zero provided that the two-
spin product operators Gi and Gj share one spin and that
[Gi,Gj] = Fk, where Fk is a three-spin product operator
involving the three different spins which appear in Gi and
Gj. An equation is obtained for all pairs (Gi,Gj) leading to
the same Fk. This means that, if we start from an hyperpolar-

ized state (the source, say G1 ¼ IAx I
A0

x ), there will be a cou-
pling (thus transfer) with another state (target) represented
by Gj, provided that the commutator [G1,Gj] on the one hand,

and the coupling constants J1 and Jj on the other hand, are non-
zero. This leads at least to the following equation:

�J 1astj � J jast1 ¼ 0. ð11Þ

Additional terms may be involved if other commutators
lead to the same Fk as [G1,Gj].

It can be noticed that the right hand-side member of all
equations derived from relation (10) is zero. These equa-
tions need therefore to be appended by an equation, the
right hand-side member of which is non-zero. This can be
provided by a conservation equation based on the norm
of the density operator. In a very general way, the norm
of an hermitian operator (as the density operator) is equal
to the trace of its square. The norm of the density operator
must be kept constant provided that it describes a steady
state (a state devoid of time evolution, i.e., a state for which
no precession occurs). This is because the square of the
density operator represents the ‘‘populations’’ (contribu-
tions) of the various spin operators upon which it is
expanded. This is true for r (0) and rst. One has thus

Trðr2
stÞ ¼ Trðr2ð0ÞÞ. ð12Þ

This can be written asX
j

jastj j
2 ¼ ja1ð0Þj2 þ ja2ð0Þj2 þ ja3ð0Þj2 ¼ 3ja1ð0Þj2. ð13Þ

It can be noticed that the rightmost member of (13) is not
of paramount importance as it represents merely a scaling
factor associated with the rate of hyperpolarization (which
may depend on a lot of experimental factors).

Additional relations can possibly be obtained by looking
at linear combinations of Gj which commute with the Ham-
iltonian. In that case, the linear combination is invariant
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thus leading to a relation between the relevant coefficients
astj and aj (0). Such a linear combination which is always val-
id can be found by remembering that F z ¼

P
iI
i
z commutes

with the Hamiltonian. This is also true for
F 2

z ¼
P

iðI izÞ
2 þ 2

P
i<i0I

i
zI

i0

z . As ðI izÞ
2 ¼ 1=4, it follows thatP

i<i0 I
i
zI

i0
z commutes with the Hamiltonian for all pairs

(i, i 0) of nuclei implied in the J coupling network. Let j the
numbering of spin pairs with j = 1 for the pair (A,A 0); G3j

will therefore represent the operator product I izI
i0
z if j corre-

sponds to the pair (i, i 0). As a consequence of the commuta-
tion property discussed above, we have alwaysX
j

ast3j ¼
X
j

a3jð0Þ ¼ a3ð0Þ. ð14Þ

This relation is very important because G3j are generally
the only relevant product operators in a PASADENA
experiment, besides, of course, G1 and G2 (see (5)) and
other similar terms when first order conditions do not pre-
vail. Concerning these two latter operators, as z is the only
specified direction, one has astat1 ¼ astat2 . On the other hand,
as the ALTADENA Hamiltonian is isotropic (see (4)), the
coefficients of I ixI

i0

x , I
i
yI

i0

y , I
i
zI

i0

z are identical and it suffices to
consider again the coefficients a3j. From the summation in
the left hand-side of (14), we can of course remove the coef-
ficients ast3j corresponding to combinations of product oper-
ators, which turn out to commute with the Hamiltonian.
Such combinations remain constant and thus do not bene-
fit from polarization transfer.

2.4. Application to the AA 0X system

Although compound D involves two deuterium nuclei
and represents therefore a more complex spin system, it
is deemed useful to determine how 13C hyperpolarization
arises in a symmetric molecule [6] described as an AA 0X
spin system.

2.4.1. Product operators and commutators

As explained in the previous section, we have to consider
the following product operators (in addition to G1 ¼
IAx I

A0

x ; G2 ¼ IAy I
A0

y ; G3 ¼ IAz I
A0

z ): G4 ¼ IAx I
X
x ; G5 ¼ IAy I

X
y ;

G6 ¼ IAz I
X
z ; G7 ¼ IA

0

x IXx ; G8 ¼ IA
0

y IXy ; G9 ¼ IA
0

z IXz .
We give below the non-zero commutators necessary for

the application of Eq. (10).

½G1;G5� ¼iIAz I
A0

x IXy ; ½G1;G6� ¼ �iIAy I
A0

x IXz ;

½G1;G8� ¼iIAx I
A0

z IXy ; ½G1;G9� ¼ �iIAx I
A0

y IXz ;

½G2;G4� ¼ � iIAz I
A0

y IXx ; ½G2;G6� ¼ iIAx I
A0

y IXz ;

½G2;G7� ¼ � iIAy I
A0

z IXx ; ½G2;G9� ¼ iIAy I
A0

x IXz
½G3;G4� ¼iIAy I

A0

z IXx ; ½G3;G5� ¼ �iIAx I
A0

z IXy ;

½G3;G7� ¼iIAz I
A0

y IXx ; ½G3;G8� ¼ �iIAz I
A0

x IXy
½G4;G8� ¼iIAx I

A0

y IXz ; ½G4;G9� ¼ �iIAx I
A0

z IXy
½G5;G7� ¼ � iIAy I

A0

x IXz ; ½G5;G9� ¼ iIAy I
A0

z IXx
½G ;G � ¼iIAIA

0
IX; ½G ;G � ¼ �iIAIA

0
IX
6 7 z x y 6 8 z y x
2.5. The steady state density operator in PASADENA

experiments

From (5), we can write the relevant Hamiltonian as

HPASA
J ¼ JAA0 IAz I

A0

z þ IAx I
A0

x þ IAy I
A0

y

� �
þ JAXIAz I

X
z

þ JA0XI
A0

z IXz

We have thus to consider G1 ¼ IAx I
A0

x , G2 ¼ IAy I
A0

y ,
G3 ¼ IAz I

A0

z , G6 ¼ IAz I
X
z and G9 ¼ IA

0

z IXz . As G3 commutes
with the Hamiltonian, ast3 ¼ a3ð0Þ. Moreover, from (14),
we can write ast3 þ ast6 þ ast9 ¼ a3ð0Þ (because a6(0) =
a9(0) = 0). It follows immediately that ast6 ¼ �ast9 . Now,
applying the strategy described by Eqs. (10) and (11), we
obtain (noticing that ast1 ¼ ast2 )

ast6 ¼ JAX � JA0X

2JAA0
ast1 .

Defining the initial hyperpolarization as K = �a1 (0)
and using (13), we obtain the steady state density
operator

rPAS
st ðAA0XÞ¼E=4þK

2JAA0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J 2

AA0 ðJAX�JA0XÞ2
q ðIAx IA

0

x þIAy I
A0

y Þ

2
64

þIAz I
A0

z � JAX�JA0Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J 2

AA0 ðJAX�JA0XÞ2
q ðIAz IXz �IA

0

z IXz Þ

3
75.

ð15Þ

From (15), it can be seen that transfer towards X occurs
provided that JAX 6¼ JA0X, consistently with the conclusions
of the previous section. Moreover, if one excepts IAz I

A0

z

which is not affected by the hydrogenation process, the bal-
ance between the hyperpolarization which remains at
(A,A 0) and the one gained by X is given by the ratio
2JAA0=ðJAX � JA0XÞ. It can also be realized that the two lon-
gitudinal orders IAz I

X
z and IA

0

z IXz benefit from the same
polarization transfer (with opposite signs) irrespective of
the individual values of JAX and JA0X.

2.5.1. The steady state density operator in ALTADENA

experiments

As already mentioned, the Hamiltonian is fully isotropic

HALT
J ¼ JAA0 ðIAx IA

0

x þ IAy I
A0

y þ IAz I
A0

z Þ þ JAXðIAz IXz þ IAy I
X
y

þ IAx I
X
x Þ þ JA0XðIA

0

z IXz þ IA
0

y IXy þ IA
0

x IXx Þ

and consequently one has the following equalities:

ast1 ¼ ast2 ¼ ast3 ; ast4 ¼ ast5 ¼ ast6 ; ast7 ¼ ast8 ¼ ast9 .

Therefore, we have to deal with three unknowns; we shall
choose ast3 , a

st
6 , and ast9 just because the two latter corre-

spond to longitudinal spin orders which can be readily con-
verted into observable quantities. Defining again K as the
initial hyperpolarization factor and referring to Eqs. (13)
and (14), we easily obtain two equations:
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jast3 j
2 þ jast6 j

2 þ jast9 j
2 ¼ K2;

ast3 þ ast6 þ ast9 ¼ a3ð0Þ ¼ �K.

The missing equation is provided by resorting on relations
such as (10) and (11) along with the above commutators

ðJAX � JA0XÞast3 þ ðJA0X � JAA0 Þast6 þ ðJAA0 � JAXÞast9 ¼ 0.

From the two latter equations, we can derive a relation
which can be very useful in view of the interpretation of
carbon-13 spectra

ast6
ast9

¼ ðJAX � JAA0 Þ � ð2JAX � JA0X � JAA0 Þðast3 =a3ð0ÞÞ
ðJA0X � JAA0 Þ � ð�JAX þ 2JA0X � JAA0 Þðast3 =a3ð0ÞÞ

.

ð16Þ

This relation tells us that ast6 may become negligibly small if
JAX is the dominant coupling and if the ratio ast3 =a3ð0Þ is ca.
0.5. Such a situation may well be encountered and this ex-
plains (see below) why the longitudinal order IAz I

X
z does not

(surprisingly) benefit from any polarization transfer in spite
of the large value of JAX.

The full solution can be obtained by using the whole set
of the three equations. If we define x as x ¼ ast3 =a3ð0Þ, we
obtain:

ast6 ¼ a3ð0Þ
ðJAX � JAA0 Þ � ð2JAX � JA0X � JAA0 Þx

JAX þ JA0X � 2JAA0
;

ast9 ¼ a3ð0Þ
ðJA0X � JAA0 Þ � ð�JAX þ 2JA0X � JAA0 Þx

JAX þ JA0X � 2JAA0
;

ð17Þ

while x is a root of the following equation:

3x2 � 2x

þ �J 2
AA0 � JAXJA0X þ JAA0 ðJAX þ JA0XÞ

J 2
AX þ J 2

A0X þ J 2
AA0 � JAXJA0X � JAA0 ðJAX þ JA0XÞ

¼ 0. ð18Þ

It can be again noticed that, if JAX is the dominant cou-
pling, then the third term is very small leading to a value
of 2/3 for x.

2.6. Carbon-13 spectra

The next step is to delineate hyperpolarization effects on
NMR spectra and, more especially here, on carbon-13 spec-
tra. These effects are usually considered as arising from the
fact that the wavefunction of nuclear spins in para-hydrogen
ðwp ¼ 1ffiffi

2
p jaAbA0 � bAaA0 iÞ is overlapped only with some of

the spin states of the product molecule. For example, if the
para-hydrogen nuclei form an AX spin system, only the ab
and ba states become equally hyperpopulated while the pop-
ulation of aa and bb states equal these of the corresponding
triplet state of the hydrogen molecule [2].

Concerning an AA 0X spin system, it is not obvious, ow-
ing to the number of spin states, that the interpretation will
be as straightforward. In order to proceed, we must first
diagonalize the matrix associated with the Hamiltonian
operator
H ¼ �ðIAz þ IA
0

z ÞmA � IXz mX

þ JAA0 IAz I
A0

z þ 1

2
ðIAþIA

0

� þ IA�I
A0

þ Þ
� �

þ JAXIAz I
X
z

þ JA0XI
A0

z IXz ð19Þ

we obtain the eight spin states (eigenvectors):

w1 ¼ aAaA0aX
w2 ¼ aAaA0bX

w3 ¼ c1ð1=
ffiffiffi
2

p
ÞðaAbA0 � bAaA0 ÞaX þ c2ð1=

ffiffiffi
2

p
ÞðaAbA0 þ bAaA0 ÞaX

w4 ¼ d1ð1=
ffiffiffi
2

p
ÞðaAbA0 � bAaA0 ÞaX � d2ð1=

ffiffiffi
2

p
ÞðaAbA0 þ bAaA0 ÞaX

w5 ¼ c1ð1=
ffiffiffi
2

p
ÞðaAbA0 � bAaA0 ÞbX � c2ð1=

ffiffiffi
2

p
ÞðaAbA0 þ bAaA0 ÞbX

w6 ¼ d1ð1=
ffiffiffi
2

p
ÞðaAbA0 � bAaA0 ÞbX þ d2ð1=

ffiffiffi
2

p
ÞðaAbA0 þ bAaA0 ÞbX

w7 ¼ bAbA0aX
w8 ¼ bAbA0bX ð20Þ

where we have introduced the two orthonormalized func-
tions wp ¼ 1ffiffi

2
p jaAbA0 � bAaA0 i and wo ¼ 1ffiffi

2
p jaAbA0 þ bAaA0 i

which characterize the hydrogen para and ortho states,
respectively. The coefficients c1, c2, d1, and d2 are eigenvec-
tor components and are given below.

With

r ¼ JAX � JA0X

2JAA0
ð21Þ

the corresponding eigenvalues are as follows:

E1 ¼ �mA � mX=2þ ðJAA0 þ JAX þ JA0XÞ=4;
E2 ¼ �mA þ mX=2þ ðJAA0 � JAX � JA0XÞ=4;

E3;4 ¼ � mX
2
� JAA0

4
� JAA0

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
;

E5;6 ¼
mX
2
� JAA0

4
� JAA0

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
;

E7 ¼ mA � mX=2þ ðJAA0 � JAX � JA0XÞ=4;
E8 ¼ mA þ mX=2þ ðJAA0 þ JAX þ JA0XÞ=4.

ð22Þ

These results are obtained by constructing the Hamiltonian
matrix on an appropriate basis essentially made of simple
spin product functions (however, because we are dealing
with para- and ortho-hydrogen, we have inserted, when
necessary, the hydrogen the para and ortho functions wp

and wo, see above): /1 ¼ aAaA0aX, /2 ¼ aAaA0bX,
/3 ¼ ð1=

ffiffiffi
2

p
ÞðaAbA0 � bAaA0 ÞaX, /4 ¼ ð1=

ffiffiffi
2

p
ÞðaAbA0þ

bAaA0 ÞaX, /5 ¼ ð1=
ffiffiffi
2

p
ÞðaAbA0 � bAaA0 ÞbX, /6 ¼ ð1=

ffiffiffi
2

p
Þ

ðaAbA0 þ bAaA0 ÞbX, /7 ¼ bAbA0aX, /8 ¼ bAbA0bX. It turns
out that the Hamiltonian matrix is diagonal except for
the two subspaces (/3, /4) and (/5, /6). For instance, the
sub-matrix associated with (/3,/4) is of the form

H ¼
� mX

2
� 3JAA0

4

JAX�JA0X
4

JAX�JA0X
4

� mX
2
þ JAA0

4

 !
.

The eigenvalues of this matrix correspond to the energies:
E3;4 ¼ � mX

2
� JAA0

4
� JAA0

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
and the coefficients c1, c2,

d1 and d2 are the eigenvectors components:
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E3 !
c1 ¼ rffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þr2þ
ffiffiffiffiffiffiffi
1þr2

pp
c2 ¼

ffiffiffiffiffiffiffi
1þr2

p
þ1ffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þr2þ
ffiffiffiffiffiffiffi
1þr2

pp
8><
>:

E4 !
d1 ¼ rffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þr2�
ffiffiffiffiffiffiffi
1þr2

pp
�d2 ¼ �

ffiffiffiffiffiffiffi
1þr2

p
�1ffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þr2�
ffiffiffiffiffiffiffi
1þr2

pp
8><
>:

ð23Þ

When JAX is much larger than the other couplings, c1, c2,
d1, and d2 are close to 1=

ffiffiffi
2

p
. This approximation will be

used in the forthcoming applications.
One would expect some enhancement for transitions

which involve eigenfunctions possessing a contribution of
the para wave function wp ¼ 1ffiffi

2
p jaAbA0 � bAaA0 i. Proceeding

that way would however lead (with some ambiguity) to
conclusions contrary to experimental observations. It is
thus mandatory to rely on the rigorous procedure de-
scribed thereafter.

The intensity of 13C transitions can be calculated on
the basis of the difference in the populations of spin levels
by applying the usual formula jhWijIXþjWjij2ðP i � P jÞ,
where IXþ is the X raising operator while Pi is the popula-
tion of the ith energy level to be calculated from possible
polarization transfers originating from para-hydrogen.
This population is simply deduced from the scalar prod-
uct Æwi|r|wiæ, where r is the density operator. The expres-
sion of the density operator has been established in the
previous section and are rewritten below in a more com-
pact way:

rPAS ¼ CPAS
AA0 ½ðIAþIA

0

� þ IA�I
A0

þ Þ=2� þ DPAS
AA0 IAz I

A0

z

þ CPAS
AX ðIAz IXz � IA

0

z IXz Þ; ð24Þ

rALT ¼ CALT
AA0 ½IAz IA

0

z þ ðIAþIA
0

� þ IA�I
A0

þ Þ=2� þ CALT
AX ½IAz IXz

þ ðIAþIX� þ IA�I
X
þÞ=2� þ CALT

A0X ½IA0

z IXz þ ðIA0

þ IX�

þ IA
0

� IXþÞ=2�; ð25Þ

where the coefficients CAA0 , DAA0 , CAX, and CA0X represent
the part of para-hydrogen hyperpolarization which has
been transferred to the AA 0X spin system (as calculated
in the previous sub-section: see Eq. (15) for the PASADE-
NA experiment while CALT

AA0 , CALT
AX and CALT

A0X can be identi-
fied to ast3 , a

st
6 and ast9 , respectively and thus deduced from

Eq. (17)).
Table 1

Transition Frequency Intensity

w1 fi w2 mX � ðJAX þ JA0XÞ=2 P1�P2 = 0
w3 fi w6 mX � ðJAX � JA0XÞ=2 ðc1d1 þ c2d2Þ2½ð�

þð�c21 þ c22 þ d
w3 fi w5 mX ðc21 � c22ÞðP 3 � P 5Þ
w4 fi w6 mX ðd21 � d22ÞðP 4 � P 6

w4 fi w5 mX þ ðJAX � JA0XÞ=2 ðc1d1 þ c2d2Þ2½ðc21
þðc21 � c22 � d21

w7 fi w8 mX þ ðJAX þ JA0XÞ=2 P7�P8 = 0

a With c1 ¼ c2 ¼ d1 ¼ d2 � 1=
ffiffiffi
2

p
.

2.6.1. The PASADENA spectrum

We obtain for the energy level populations:

P 1 ¼ P 2 ¼ P 7 ¼ P 8 ¼ DPAS
AA0 =4;

P 3 ¼ P 5 ¼ �ðc21 þ c22ÞDPAS
AA0 =4þ ðc22 � c21ÞCPAS

AA0 =2þ ðc1c2ÞðCPAS
AX Þ;

P 4 ¼ P 6 ¼ �ðd2
1 þ d2

2ÞDPAS
AA0 =4þ ðd2

2 � d2
1ÞCPAS

AA0 =2� ðd1d2ÞðCPAS
AX Þ.
ð26Þ

Transition intensities, for carbon-13 transitions, can then
be calculated according to jhWijIXþjWjij2ðP i � P jÞ, as ex-
plained before. The results given below are obtained under
the hypothesis that no mixing effect occurs due to a non
equilibrium state [14]. In a general way, this corresponds
to spectra obtained under small flip angle conditions or,
as this is here the case in practice, to first order spectra
(see Table 1).

The enhanced spectrum is thus made of an antiphase
doublet which corresponds in fact to the outer lines of
the doublet of doublets (see Fig. 3, middle) if one assumes
that JAX and JA0X are of opposite signs. This latter hypoth-
esis is certainly true in the case of dimethylsuccinate and is
consistent with the experimental observations of Fig. 2. Of
course, further splitting due to coupling with the deuterium
nucleus (in the form of a 1:1:1 triplet) has to be taken into
account. We can also notice a small residual pattern of the
same type as the one observed in ALTADENA experi-
ments (see below) which is presumably due to imperfect
experimental conditions.

2.6.2. The ALTADENA spectrum

We obtain for the energy level populations:

P 1 ¼ P 8 ¼ ðCALT
AA0 þ CALT

AX þ CALT
A0X Þ=4;

P 2 ¼ P 7 ¼ ðCALT
AA0 � CALT

AX � CALT
A0X Þ=4;

P 3 ¼ P 5 ¼ ð�3c21 þ c22ÞCALT
AA0 =4þ ðc1c2=2ÞðCALT

AX � CALT
A0X Þ;

P 4 ¼ P 6 ¼ ð�3d2
1 þ d2

2ÞCALT
AA0 =4� ðd1d2=2ÞðCALT

AX � CALT
A0X Þ.

ð27Þ
The carbon-13 characteristics are gathered in Table 2.

From the last column of the above table it can be seen
that the observed spectrum will depend on the relative val-
ues of CALT

AX and CALT
A0X (see Fig. 3, bottom) or on their ratio

as calculated in the previous section (see formula (16) with
ast
6

ast
9
¼ CALT

AX

CALT
A0X

Þ. In particular, if CALT
AX becomes negligibly small

(due to the values of the various couplings and to the fact
Approximate intensitya

0
c21 � c22 þ d21 þ d22ÞDPAS

AA0 =4
2
1 � d22ÞCPAS

AA0 =4þ ðc1c2 þ d1d2ÞCPAS
AX �

CPAS
AX

¼ 0 0
Þ ¼ 0 0
þ c22 � d21 � d22ÞDPAS

AA0 =4
þ d22ÞCPAS

AA0 =4� ðc1c2 þ d1d2ÞCPAS
AX �

�CPAS
AX

0



Fig. 3. Schematic spectra of a carbon-13 coupled to two chemically equivalent protons (AA 0X spin system). From top to bottom: conventional,
PASADENA and ALTADENA spectra. For the PASADENA spectrum, the signs of JAX and JA0X are assumed to be opposite whereas the sketch of the
ALTADENA spectrum corresponds to a situation for which CALT

A0X is larger than CALT
AX (see text).

Table 2

Transition Frequency Intensity Approximate intensitya

w1 fi w2 mX � ðJAX þ JA0XÞ=2 CALT
AX þ CALT

A0X CALT
AX þ CALT

A0X

w3 fi w6 mX � ðJAX � JA0XÞ=2 ðc1d1 þ c2d2Þ2½ð�3c21 þ c22 þ 3d21 � d22ÞCALT
AA0 =4þ ðc1c2 þ d1d2ÞðCALT

AX � CALT
A0X Þ� CALT

AX � CALT
A0X

w3 fi w5 mX ðc21 � c22ÞðP 3 � P 5Þ ¼ 0 0
w4 fi w6 mX ðd21 � d22ÞðP 4 � P 6Þ ¼ 0 0
w4 fi w5 mX þ ðJAX � JA0XÞ=2 ðc1d1 þ c2d2Þ2½ð3c21 � c22 � 3d21 þ d22ÞCALT

AA0 =4� ðc1c2 þ d1d2ÞðCALT
AX � CALT

A0X Þ� �ðCALT
AX � CALT

A0X Þ
w7 fi w8 mX þ ðJAX þ JA0XÞ=2 �ðCALT

AX þ CALT
A0X Þ �ðCALT

AX þ CALT
A0X Þ

a With c1 ¼ c2 ¼ d1 ¼ d2 � 1=
ffiffiffi
2

p
.
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that, in (16), further transfers toward deuterium [10] and
mediated by the carbon-13 nucleus have not been accounted
for), one would observe two identical antiphase doublets (of
splitting JA0X) and separated by JAX. The agreement between
theory and experiment appears quite reasonable if one con-
siders the additional splitting in the form of a 1:1:1 triplet
due to coupling with the deuterium nucleus (see Fig. 1).

3. Conclusion

This study has demonstrated the importance of a proper
theoretical treatment for understanding (and predicting)
the detailed features of the spectra obtained after para-hy-
drogen polarization transfer. Line intensities are seen to de-
pend critically not only on the J values but also on the type
of experiment (ALTADENA or PASADENA). Important
differences in the spectra of Figs. 1 and 2 illustrate this
property which arises from quite different combinations
of J couplings in the expressions relevant to these two
experiments. Another important result of the present work
is the absence of transfer toward X when the two para-hy-
drogen spins are, in the product obtained after hydrogena-
tion, part of an A2A

0
2X spin system. This lack of transfer

can be easily explained by the nature and the symmetry
of the spin system. This feature has been confirmed with
other molecules (else than the one considered here), espe-
cially in the case of ethylene as obtained by para-hydroge-
nation of acetylene.
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